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A Hard Core Bose Gas 
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We study a one-dimensional gas of Bosons interacting through Neumann hard 
cores of diameter a. Attractive boundary conditions are imposed on the system, 
so that when a = 0 the model exhibits Bose-Einstein condensation and singular 
thermodynamic functions. In the presence of a hard core (a > 0), the free energy 
density retains its singularity, but Bose-Einstein condensation does not persist, 
even in the generalized sense. 
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1. I N T R O D U C T I O N  

Sixty years after the discovery of Bose-Einstein condensat ion in the free 
Bose gas, (1) the following problem remains largely unsolved: Is this 
phenomenon  stable with respect to the introduct ion of a two-body interac- 
tion? This is one of  the basic questions of quan tum statistical mechanics, 
and the impor tance  of the issue for our  understanding of the structure of  
the theory can hardly be denied, not  to mention applications to super- 
fluidity. 

The following partial results have been obtained in special cases: 
(i) A mean-field repulsive interaction does not  destroy the conden-  

sation phenomenon.  (2-4) 
(ii) If  the Hamit tonian  of  the free gas has a gap m ~ts spectrum, then 

Bose-Einstein condensat ion is stable under  per turbat ion by any integrable 
two-body  potential  of positive type. (5) 
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632 Buffet  and Pule 

On the other hand, there is a class of results which can be viewed as 
stability of the absence of condensation: 

(a) Using Bogoliubov's inequality, one can show (67~ that in a 
situation in which the free Bose gas does not show any condensation, 
neither does a gas with superstable interaction. 

(b) Lenard] s'9) and Schultz (1~ have proved that there is no conden- 
sation (even in a generalized sense; see (1)) in a model of one-dimensional 
Bosons with point hard core and periodic boundary conditions. 

This last group of studies were prompted by the claim by 
Girardeau ~ that the model described in (b) exhibited generalized conden- 
sation in the sense that 

lim lim V -1 ~ ( N y ) > 0  (1) 
~-~0 V ~  j : E j v ~  

instead of the usual 

lira V-~(N~)>O (2) 
V ~ o o  

where E~f<Ef<<.-..denote the eigenvalues of the one-particle kinetic 
energy in a box of volume V and N~ ~ are the occupation numbers of the 
corresponding eigenstates. Lenard's work disproving Girardeau's conjec- 
ture is an elegant piece of mathematical physics, but it must be said that 
the result itself is hardly a surprise. Indeed there is no generalized conden- 
sation in model (b) in the f lee case, so that if the result of Ref. 11 were 
true, it would mean that a repulsive interaction has created a (generalized) 
condensate, a very unlikely event indeed. Another argument against Girar- 
deau's prediction is that the Hamiltonian of model (b) is unitarily 
equivalent to that of a free Fermi gas, and so the thermodynamic functions 
do not show any singularity. 

The manner in which model (b) should be modified in order to 
become relevant to the problem of stability of Bose-Einstein condensation 
is now clear: 

(e) first of all, one should start from a situation in which the free gas 
exhibits condensation. 

(/~) next, the interaction should be such that it does not destroy the 
Bose statistics. 

That condition (e) can be met in one dimension through a choice of 
attractive boundary conditions was first demonstrated by Robinson(t2); see 
also Ref. 13. As for condition (fi), we show in Section 2.t that it holds for 
suitably defined hard cores involving Neumann conditions at the contact 
between the particles. 

A consequence o f  the choice of a Neumann hard core is that the 
interaction Hamittonian is now related to that of a free Bose gas [instead 
of a Fermi gas for model (b)]; this gives an easy access to the ther- 
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modynamics of the system, which exhibits a singularity at a critical value of 
the density (see Section 3). Hence our model seems to be a very strong can- 
didate for showing Bose-Einstein condensation. Note also that our choice 
of boundary conditions (mixed attractive and repulsive) has the effect of 
creating a gap in the spectrum of the one-particle kinetic energy operator 
[see (55)], so that by extrapolation of (ii) one could expect that the 
interacting gas retains the condensation property of the free gas. 

However, there is no a priori evidence for this, because the equivalence 
between our model and a free gas does not go beyond the ther- 
modynamical level: indeed the correspondence between Hamiltonians [see 
(29)], does not extend to occupation numbers or creation operators. 
Hence, correlations or averages (and in particular condensation properties) 
of our model cannot be deduced from those of the free gas. In fact it turns 
out that our model does not show Bose-Einstein condensation, even at 
zero temperature, a rather unexpected result (see Theorem 3). 

The next possibility is that the system could display generalized con- 
densation [see (1)]. Indeed, for noninteracting systems, this has been 
shown to be equivalent to the presence of a singularity in the ther- 
modynamic functions. (14~ However this phenomenon is also absent from 
our model at zero temperature (see Corollary 2). Hence, the model studied 
in this paper illustrates how unstable the phenomenon of Bose-Einstein 
condensation can be: it can be destroyed even by a perturbation which is 
gentle enough to preserve the singularity in the thermodynamic functions. 
It is also worth stressing that the discovery of a singularity in the ther- 
modynamic functions of an interacting Bose gas is no evidence for 
Bose-Einstein condensation, even in the generalized sense [see remark (i) 
in Section 4.2]. 

We conclude this introduction with some general remarks on 
Bose-Einstein condensation. It is sometimes stated that for an interacting 
system, the very concept of macroscopic occupation of a one-particle 
kinetic energy eigenstate is not appropriate, and that a new formulation of 
the problem is required. We wish to point out that this is not so. We work 
for simplicity at zero temperature, but everything can be extended to 
strictly positive temperatures. 

Consider N interacting bosons in a rectangular box f2 of volume L v, 
and suppose that qS(xl . . . . .  XN) ~ ~N(L2($'2N)) is the real-valued ground state 
wave function of the system. The one-body reduced density matrix at T =  0 
is 

PL(x, y )=Nfa  d~zl""fa dVaN_lqS()C, Zl,...,2N_l) 

x q~(y, zl,...,ZN_I) (3) 
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We denote by 
RL: L2(~) ~--~ L2(K2) (4) 

the integral operator with kernel pL(X, y). 
Let f e  L2(f2) be a normalized one-particle wave function. The average 

number of particles in the state f is (q~, N~q~), where the operator N~ on 
~ N ( L 2 ( O N ) )  is 

N~.=Pf |174  ." |  I | 1 7 4 1 7 4  . "  |  " "  

+ I @  " "  | 1 7 4  (s) 

Pf: L ~ ~'2 ~ L 2 s -( ) ( ) being the orthogonal projection o n t o f  Now, by virtue 
of the symmetry (or, for that matter, skew symmetry) of 4, we have for 
arbitrary f in L2(f2): 

(r N~qS) = U f d~xo �9 " f dYXNf(xo) f ( x N ) ~ ( X o ,  Xl,---, XN--1) J~ 

The condition 

x q~(x,,..., XN) = (f, R ~ f )  (6) 

lim L-V sup (f, R ~ f )  > 0 (7) 
L ~ co f~LZ(f2) , l [ f t l  = I 

is usually catted the Onsager- Penrose criterion for existence of 
Bose-Einstein condensationJ 15) In view of the identity (6), we see that this 
is essentially the usual criterion. The only difference is that one does not 
look at the occupation of a one-particle state prescribed in advance (say 
the ground state of the one-particle kinetic energy); instead one looks for 
the occupation of whatever one-particle level is most populated, and (6) 
shows that this must be the eigenvector of Rg with the highest eigenvalue 
(note that for finite L, R~ is trace-class and self-adjoint, so that the 
supremum in formula (7) is actually attained for some fo L in Lz(~Q)). 

2. THE M O D E L  

2.1. Neumann Hard Cores 

Consider N bosons in [0, L l interacting through a hard core of 
diameter a. Formally, the Hamiltonian of this system is the operator on 
~gON(L2([0, L]N))  given by 

N 02 
-a Z E v(x,-xj) (s) 
2 i=1 l<~i<,]<<,N 
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where 
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V(y) = {0, if fyl>a 
0% if lY]~<a (9) 

The best way to make sense of such an expression is to take care of the 
hard core condition through a restriction of the configuration space, The 
accessible region g2Z~N is defined as 

~aL, N={(XI , . . ,XN)  f f[O,L]N: [ x i - - x j l > a , i # j = l , Z , _ . N }  (10) 

The suitable Hilbert space for the description of hard core systems is 

~t~.N = ~v(L2($Q~.N)) (11 ) 

and the formal expression (8), (9) is replaced by the Hamiltonian 

H ~ _ - 1 •2 
L , u - - ~ -  ~ ~ on ~ , u  (12) 

i=1 

In order for (12) to determine unambigously a self-adjoint operator, 
one has to choose a set of boundary conditions. The boundary of the 
accessible region is made of two parts: the auter boundary 

Bout= {(xl ..... XN)~Q~,~:Xi=0 or x i = L  for somei} (13) 

and the inner boundary 

Bin = {(xl,..., xN)f f~ , ,x :  [Xi--Xj[ =a for some i ~ j }  (14) 

Obviously, the choice of the inner boundary conditions completes the 
specification of the interaction. Throughout this paper we work with 
Neumann boundary conditions on B~,: 

~ i  ~(Xl,..., XN) I~,-x,=. = 0 (15) 

The operator (12), supplemented with (15) and a suitable boundary 
condition on Bo,t (see Section 2.3), defines the Hamiltonian of the Bose gas 
with Neumann hard cores, 

A special feature of hard cores in one dimension is that H~, N is 
unitarily equivalent to a Hamiltonian with zero-radius hard core and 
modified L. This is a well known property, r but recall its derivation for 
the reader's convenience; first note that 0~, N can be decomposed as follows: 

~a L,N = w .~sNR~ (16) 
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where the disjoint regions R~ are defined by 

0 ~< x~(1) < x~(2) -- a 

a < x~(2) < Xrc(3) - -  a 

2a < x~(3) < x~(4~ - a (17) 

( N -  1 ) a < x ~ ( N ) ~  L 

Define then the mapp ing  

DN" ~ , N  ~--~ [0, L - -  ( N -  1) a] N (18) 

by means  of its action on each region R~ : 

( Y l  ..... Yj,'", YN) ~ DN(X1 ..... Xj,..., XN) 

= [x l  + a - a n  I(1),..., x j + a - a r c - l ( j ) , . . . ,  XN 

+ a--aTz I (N) ]  in R~ (19) 

or equivalently 

y,~(;) = x~(s) - a ( j  - 1 ), j = 1, 2,..., N (20) 

Note  that  DN maps  R~ onto  the region 

0 ~< YTr(1) < Yrr(2) < " "  < Yzc(N) ~ L - -  a ( N -  1 ) (21) 

Define finally [with the same nota t ion  as before; see (11)] 

0 (22) ~N: ~tt~L,NI-"-> ~'~ 1),N 

~@N ~rt= t/Jo DN 1 (23) 

To  any opera to r  A on S ~ , N  we can associate a unitarily equivalent  
o by the formula  o p e r a t o r / ~  o n  ~L--a(N--1),N 

.d = ~NAI~  N 1 (24) 

In part icular,  for the Hami l ton ian  (12): 

--1 ~ c ~a 
HL, - -  2 ~ ?x~ o n  ~OL--a(N-- ~.N (25) 

i = 1  
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and the boundary conditions are now required to hold on /~o~t and /~, 
where 

/~out = {(XI,... , XN)@ [0, L--a(N-- 1)IN: xi=O or 

x i = L - a ( N -  1) for some i} (26) 

/3i~ = { ( x l  ..... xzv.)e[0, L - a ( N - 1 ) ] N : x i = x  / f o r some  i# j}  (27) 

The above discussion is classical (see Ref. 16)] and its validity does 
not depend on the nature of the boundary condition on B~,. But if we 
specialize to Neumann hard cores, we see that (15) becomes [using (23), 
(19), (27)] 

( O(~i ~ j )  ~(xl'''''xN) Ixi~:x]=O (28) 

0 is symmetric, (28) is automatically But since every ~ in ~L-~(ev 1),N 
satisfied. This means that the inner boundary Bm can be completely 
overlooked, and thus 

f~IaL,N ~- ~ N H a L , N ~  N 1 = H~e5 a<N- 1),N (29) 

where t4rree is the operator on ~ ~ L,a( N -- 1),N 

~ f ~  -J~v(L21-0, L - a ( N -  1)3 N) L,a( N -= 1 ),N -- 

= ~v( { L2 [0, L - a ( N -  I )] } | (30) 

describing N free bosons in [0, L--a(N--1)] with appropriate boundary 
conditions on Bout. In other words, the transformation (24) is an exact 
diagonalization of our interacting Hamiltonian, 

Remarks. (i) For Dirichlet hard cores, one finds that H~+ N is 
unitarily equivalent to the Hamiltonian of a gas of free fermions in 
[0, L - a ( N -  1)]; see Refs. 7-10 and 15. 

(ii) In view of the close connection of tQ, u and Hf~(N_I>,N, the 
reader might be tempted to conclude that the Bose gas with Neumann hard 
cores is merely a disguised version of the free Bose gas. We emphasize that 
this is not so, because the unitary transformation (24) does not preserve 
occupation numbers. By this we mean that, upon applying the transfor- 
mation ~ N . N ~  1 to a number operator N s of the original model, one does 
not obtain a number operator of the transformed system; nor is Ny easily 
expressible in terms of creation and annihilation operators of the new 
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model. Hence there is no simple transformation which would allow us to 
predict averages occupation numbers (or more general correlation 
functions) of the hard core gas in terms of those of the associated free gas. 

2.2. Reduced Density M a t r i x  at Zero Temperature  

In this section, we obtain the explicit form of the one-body reduced 
density matrix of a Bose gas with Neumann hard cores at zero tem- 
perature. From now on we work for simplicity with N +  1 particles in 
[0, L], and we put 

L' = L -  aN (31) 

Let T(xl, . . ,  x N +1) be the ground state wave function of H~, N + 1. Then [see 
(23), (24), and (29)] 

~[/= (@| 1)) ~ DN + ~ (32) 

where ~0(x) is the (real-valued) ground state of the one-particle operator 
l d  2 
2dx2 on L2([0, L'])  (33) 

with a boundary condition to be specified later. 

T h e o r e m  1. Let pL(X, y) be the one-body reduced density matrix 
describing (N+ 1 ) bosons in [0~ L] with Neumann hard cores at zero tem- 
perature. Then for x ~< y 

pz(x, y )= 2 '  I~'k)( x, Y) + ~"  t(~jd)(x, y) (34) 
O<~j<k< N O<.j<<.N 

where 

(N+  1)! q~(x-ja) q) (y -ka)  
I~J,k)~x y ) =  L ~,~ ' fl(k - j)!( N -  k )! 

x dzcp2(z) dzq)(z - a) (p(z) 
[_ x--(j--l)a 

X f fyL~kadZ@2(Z)] N - k  

with q~ as in (32). In (34), Z '  denotes the sum restricted to 

- j  

(35) 

ja<~x, ( k - j )  a < ~ y - x - a ,  ( N - k ) a < ~ L - y  (36) 
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and Z" the sum restricted to 

ja<~x, ( N - j ) a < ~ L -  y (37) 

ProoL By definition of pL(x, y) [see (3)]: 

.L Io p L ( X , y ) - . ~ - ( N - I - 1 ) j  0 d 2 1 ' ' "  d Z N ~ T J ( x ~ . z I , . . . , Z N ) ~ ( T ,  Z1,...~.ZN) ( 3 8 )  

= ( N +  1)' f0 d z l " ' f  dZN~(X, Zl,...,ZN) 
~z I < z2... <ZN<~ L 

X ~-](y, Z 1 ,..., Zu)  ( 3 9 )  

Supposing that x ~< y, this can be written as 

(N+ 1)! ~<'~ ;o dzl '" f~ dzu 
0-<~J~ " ~--<N ~-<721< "'" *zs """ k < y <:2k+ 1 '< "''ZN~L 

X ~ r ( Z l , . . .  , z.j., X~ Z j + I , . -  , ZN) ~ ( Z  1 . . . . .  Z k ,  y ,  Z k + i , . . .  , ZN) 

+ ( N + l ) ,  ~"  Io dz~. I 
O~j~<N ~<zl<  "'" <zj<x<_ y<z/+t< ""ZN<~L 

X ~ ( Z I , . . . , Z j ,  X, Z j + I , . . . , Z N )  ~ ( Z  1 ..... Zj, T, Z j + I , . . . , Z N )  

dz~v 

(40) 

where Z '  and ~"  are as in (36), (37), and we have put ZO=--O, ZN+I-~L. 
Using (32) and (19), the integrand of the first and second terms read, 
respectively, 

and 

J 
(p(x - aj) (p(y -- ak) ~I (P2(Z,,, - a(m - 1 )) 

m = l  

k N 

x [I  (o(zp--ap) q~(zp-a(p--  1)) 1-1 
p ~ j + l  q ~ k + l  

~o2(Zq - aq) (41) 

j N 

(p(x--aj) cp(y-aj)  I-I q~2(zm--a(m--l)) 1-[ (P2(zp-ap) (42) 
m=l  p = j + l  

so that the result (34) follows by changing the variables of integration. | 



640 Buffet and PuI~ 

Note in particular the form of the local density [when x = y, the sum 
Z '  does not contribute; see (36)]: 

pL(X)=_pL(X,X)=(N+I) i , ( N )  j=o J q~ 

x[j'~-J~dz~o2(z)]Y[!L~ydzq~2(z)] N-y (43) 

where ~2" denotes the sum restricted to 

x -  L' <<. j a <~ x (44) 

Remark. We do not distinguish between g~(xl ..... XN+I) , defined in 
principle on s9 ~ only, and its extension to [0, L]  ~v+~ obtained by L , N + I  

putting the function equal to zero on the inaccessible region 
[0, L ]  N +  1 a \~L,N+I' 

2.3. O u t e r  B o u n d a r y  Cond i t ions  

So far we have not specified the outer boundary conditions. Since our 
main purpose is to test the stability of Bose-Einstein condensation with 
respect to the introduction of a Neumann hard core, we shall select boun- 
dary conditions for which the one-dimensional .free Bose gas shows 
macroscopic occupation of its ground state. It was first proved by 
Robinson 1~2) that attractive boundary conditions have the required property 
(see also Ref. 13). It turns out that in our model, the following boundary 
conditions (repulsive at 0 and attractive at L) are easier to handle: 

0 
ax--~ tU(xl,..., xN§ = ~(xl , . . . ,  xN+l I~,=0 

(45) 
? 

(~X~' ~(XI '""  XN+I)lxi=L~---O'~[/(XI'"" XN+I)I.~q= L 

where a > 0 is a fixed parameter. When translated in terms of 

qs= ~ o D  -1 =q~| (46) N+I 
these become simply 

~o'(0) = acp(0), q/(L')  = a~o(L') (47) 

The one-particle Schr6dinger problem 
1 tt --~o =Eq~, q~L2[0 ,  L '] (48) 

with boundary conditions (47) has the following normalized solutions: 
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First a set of eigenvectors with positive energy 

n 2 ~  2 
c ' _  n=  1, 2,... En - 2L'2' 

/ 2 \1/2 / n ~ x  

(p~ '(x)=~-;)  s i n k T ; - + ~ '  ) '  

where 

(49) 

(50) 

nT~ 
tan c~'= a L '  (51) 

But there is also an eigenvector with negative energy 

0 -2 
E~'= - - ~  (52) 

~ o ~ ( x )  = C e  ~x (53) 

{ 1)1J2 (54) C = \exp 20-L - 

This choice of boundary conditions completes the description of our 
model. The explicit form of the one-body reduced density matrix at zero 
temperature can be obtained by inserting (53) in (35). 

3. T H E R M O D Y N A M I C  F U N C T I O N S  

One of the physical consequences of the unitary equivalence (29) is 
that the thermodynamics of our model is closely related to that of the free 
Bose gas with boundary conditions (47). For this reason we shall first 
review the properties of this model. 

3.1. R e v i e w  of the  Free Gas 

Consider a gas of free Bosons in [0, L] with boundary conditions of 
the type (47). The spectrum of the one-particle Hamiltonian is [see (49), 
(52)] 

{ 0-2 .2~2 } 
2 ' 2L 2' n =  1, 2 .... (55) 

This implies that, even after the thermodynamic limit, the grand canonical 
pressure Po(#) for this model is defined only for values of the chemical 
potential such that 

0 -2 
# <  --~- (56) 
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or in terms of the activity 

Z "Q e - (1/2)gc'2 ~ z 0 (57) 

The equation of state 

~o = ~c0(p) (58)  

(we call z0 the pressure as a function of the density and we omit 
systematically the g dependence) is given by 

1 
~zo(P) = (2~)~/2p/~ gg/2(Zo) for p 1> p; (59a) 

and can be got for p < p~ by elimination of # between 

1 
P O ( # ) -  g3/2(e3~') (59b) (2~)"~33/2 

1 
Po(#) -  (2~z/~)~/2 gl/2(e~`) (59c) 

The critical density p; is given by 

1 
p; = (2rcfi)l/2 gl/2(zo) (60) 

In (59), (60), the functions gin, g3/2 are defined as 

Xn 
g~(x) = ~ (61) 

Since the equivalence between our interacting Hamiltonian and the 
free one is N dependent, the relation between the thermodynamics of the 
two systems is best studied on canonical quantities, such as the free energy 
density per unit volume fo(P). 

Using the equation 

=o(p)  = p f ; ( p )  - f o ( p )  (62) 

we obtain easily from (59a) 

cr2p 1 
fo(P) = - 2 (2z@/2/33/2 g3/z(Zo) when p~>p~ (63) 
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In the regime p < p~, it is difficult to get an explicit expression for )Co, but 
we can see that there is a jump in f~  at p = p~: 

fo(Po + ) - fo(Po-  ) = - -  2~2bo)  (64) 

3.2. The Interacting Gas 

We turn to our model of interacting gas. Its free energy density at 
finite volume is 

f ,  ( N )  -= - ~L log Tr e - ~ , N  (65) 

- ]~L log Tr e - "  L-otN-II,N ( 6 6 )  

L -- a(N- N 
-- L 1 ) f ~ _ ~ ( N _ ~ , I L _ a _ ( _ ~ _ l )  ] ~ ~  

L-a(N-1)f~_~(N_,)UN L ] 
- L - -s  1) (67) 

so that in the limit L - ,  oo: 

1 
< - (68) P a 

Hence there is a critical density 

C _ _  p ~ -  - < -  (69) 1 +ap~ a 

such that [see (63)]: 

2 o ] 
f~(p) = p - -~- -t (2)z),/2 fl3/2 g3/2(Zo) 

1 
c 

(2rc)1/2 fl3/2 g3/z(zo), p ,i p~ (70) 

There is again a jump in f"a at p = p; :  

tt C tt C - -  

fa(Pa+)--f"(P~--)=-- g--l/2(Zo) 1-t 
a ]3 

(2z~8)j/2 g l / 2 ( z o )  (71) 
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The shape offa(p) is similar to that offo(p ) (see Fig. 1), except for the 
fact that the slope of the linear segment [p~, a - I ]  can be positive or 
negative depending on the value of the parameters a, ~r. 

Remarks. (i) It might be surprising thatfa(p) does not tend to + oe 
as p approaches the closest packing density a -1. In fact, this can be 
understood as follows: at finite colume the closest packing limit is 
N ~ La-  1 + t, But in this limit, all the positive eigenvalues of the one-par- 
ticle kinetic energy in [0, L -  a ( N -  1)] tend to + wo [see (55)], so that in 
view of (66), f~ ' (p)~  +oe as p ~ a - t + L  -1. Hence the graph of the 
limiting function f~(p) should really be supplemented by the value + co at 
the end point p = a-1. 

(ii) The presence of a straight segment in f~(p) indicates that the 
model may have abnormally large fluctuations of its number density, (~7) a 
phenomenon which is usually believed to be a pathology of the free Bose 
gas. 

(. 

C 

Po 

, ! 

! 

Fig. 1. The free energy density for the free gas. 

P 
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4. ZERO-TEMPERATURE PROPERTIES 

4.1. The Local Density 

Our subsequent discussion of Bose-Einstein condensation depends 
crucially on the properties of the local density pL(x); see (43). Our first 
result is an upper bound. 

Proposition 1. Let pL(X) be as in (43), with ~o as in (53) and 
a > 0. Then, for L and N large enough 

PL(X) .<. 4a(N + 1)5/211 + log(N-  1)] + 8a(N+ 1) (72) 

Proof. Substituting (53) in (43), we get 

( 2a)N s=o 
• {e2~U--e2a(x-ja)} N- j  (73) 

=(N+t)2cr[I__e--2~ f *  ( N )  e2~{~-J~- z-', 
j = 0  J 

• {e2~{~-:"-L')--e-2~L'}i{1 - -e2~-~-L' )}  ~'-j (74) 

~ ( N +  l)2a[1--e-2~L']-(u+~) ~* . e2~J(x-J ~-L') 
j=O 

x { 1 -- e~r~-./~-c')} N-~ (75) 

Extracting from the sum the terms j = 0 and N, and putting 

B N =  [1 --  e - 2 a L ' ]  - ( x + l )  (76) 

we have 
N--1 ) 

pc(x)-4cr(N+ I )BN~2~(N+ 1)BN ~ *  ( J  e 2~'c~-'-i~ 

• { 1 -- e2~-J~-L')} N-j (77) 

~< 2o'(N + 1 ) B u (78) 
j = I  

• max {e2~v(l-e2~Y) N-J} 
o.~ ,,<~c" (79) 

N+t  ~! -j �9 N-- 
= 2a(N+ 1) B~v ~'* N ! s  (S- j )~" -  : 

:~=t NNJ! ( N - j ) !  

822/4o/5~6-3 
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Now, the following version of Stirling's formula, (18) 

k~ 
e 7/8 < < e 

k k x/~e-k (80) 

implies 

N--I 
pL(X)_4a(N+I)BN<~2a(N+I)BNe_3/4NI/2 ~ ,  1 1 (81) 

S =1 x ~  ( U -  j)  1/2 

<~2aBN(N+ 1) 3/2 N~I 1 (82) 
j = l  J 

<~ 2aBN(N+ 1)3/2[-1 + l o g ( N -  1)] (83) 

This proves the result (72), because 

BN-"* 1 as N ~  o~ I (84) 

The reader might think that, because of the hard core interaction, the 
local density should be bounded by the close packing density a - l ;  but in 
fact in the absence of translational invariance, the only restriction imposed 
on pL(X) by the presence of a hard core is the following one [-see also 
remark (i) at the end of this section]. 

P ropos i t i on  2. For a one-dimensional system with arbitrary 
statistics and hard core diameter a, the local density pL(X) obeys the con- 
dition 

ff +adxpL(x)<.l for every b (85) 

We omit the proof, which is independent of the nature of the hard 
core; see Section 2. 

P ropos i t i on  3. pL(X) is a continuous function of x. 

Proof. From the definition of pL(X)= pL(X, X) [see (38)] we have 

pL(x) = (N+ 1) f~ dzl"dzu TZ(x, Zl,..., ZN) (86) 
(x) 

= ( N + l )  ~ fa dzl'"dZN~P2(x'z~ ..... zn) (87) 
Tg~SN+I ~r(X) 



A Hard Core Bose Gas 647 

where 

= {(z,,..., zN): (x, z,,..., zN)e  oT.,N+ 

. . . . .  

(88) 

(89) 

with the same notation as before; see (10) and (17). Now, q~(y)= Ce ~y is 
continuous, and so gt is continuous in Q~.N+I [see (32)]. Moreover, the 
x dependence induced by g2~(x) is also continuous, because it comes 
through the limits of integration. For example the term ~z = I in (87) reads 
explicitly: 

dzl dz2"" d z N  ~J2(x, z I ..... ZN) I (90) 
x + a  Z l + a  N I +  a 

Remarks. (i) One can infer from propositions 1 and 3 that for any 
y < 1, the scaled density pL(Ly) becomes asymptotically smaller than the 
closest packing density a-1 

(ii) Proposition 3 (and its proof), can be extended in a 
straightforward manner to yield continuity of PL(X, Y) in each variable. 

4.2,  Absence  o f  C o n d e n s a t i o n  

Let f be an arbitrary normalised function in L2[0, L]. The average 
occupation number of the level f a t  zero temperature is [see (6), (38)] 

( N~ ) = f:  dx f:  dyf(x) f(y) pr(x, y) (91) 

The key result of this section is an upper bound for the occupation of 

1 h(x) = ~ (92) 

T h e o r e m  2, With the above notation 

<l'~ > ~ < 1  {log(ZN+ 1) + y} (93) 

where 7 depends only on ~r and a [see (104)]. 
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ProoL With q) given by (53), the explicit form of (35) is 

l~f(x, y ) =  ( N +  1)t C 2N+2 e ~(x+y-ja-ka) 
j ! ( k - j ) l ( N - k ) !  (2a) u 

x [e 2~(x-J'~ -- 1]J[e 2~(y-k~) _ e~(x-ia+~)]k-j 

x [e a~L'- e2a(y--ka)]N--ke--aa(k -j) (94) 

And we have 

(N~; )=2  ;]~dy ;t] dxpL(x, y) 

LO~j<k<.<.N (k+ t)a Uja 

2 ~ , f ~  '+ja " y + dy ;j,, dxI(Zd)(x, y) 
j=O J 

(95) 

(96) 

Inserting (94) in (96) we find, after a few simple transformations: 

2 C zN+2 (N+ 1)! e,~a(2N+l_k_j) 
( S ~ )  = L L(2a) N+2 o .<j< k ~< u J!( k - j ) ! ( N -  k)! 

;A dv f~ du (u_  t ) j ( v_u)k_ j (A_v)u_  k 
x ol~ - ~  Jt x~ u 

2 C 2N+2 N ( N +  1)! 

x i.,, ~1 ~,fi'I1 ~ -- t)J(B-"[~)N-J (97) 

where we have set 

A = exp[2a(L'  - a)]  

B = exp [2aL ' ]  

(98) 

(99) 

By a repeated use of the inequality 

1 1 
~ < ~ ( y _ l ) m  y>~l (loo) 
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and of the formula 

9 I!(D- 1) )~+/+ 1 
dz(z - 1)~(D - z) t-- (Y + 1)--. (7 + l + 1) (101) 

(where 7 > -1  need not be ar ;nteger) we deduce the following bound on 
(97): 

(N~.) ~< 2 c2N+2 [ 
L (2--~A-2 (A-  1)N+le (2N+l)aa 

k~ 
X 2 C --~a(k +j) 

O~j<k~N J!(J+ I/2)"'" (k+  1/2) 

1 N 1 ] 
+ (B-- 1) ~+ j~=oj_~i/j__ J (102) 

~ < ~  2 ~ e-~"(k+.J+~t+ [2+ log(2N+ 1)] (103) 
O<~j<k~N 

2 f e - ~ a  ] 1og(2N+l) (104) 
~<a-L ( 1 - e  ~ 2+1 + aL 

This completes the proof of Theorem 2. | 

Corol lary  1. Let feL2[0 ,  L] be a normalized wave function obey- 
ing 

If(x)l ~<DL on [0, L] (105) 

Then 

<NF> ~< D~ [log(2N+ 1) + 7] (106) 
G 

In particular if we put 

N~=NZg~, j = 0 ,  1,2 .... (107) 

where @ are the eigenvectors of the one-particle kinetic energy, we have 

2o- 
(N~)  ~< 1 - e -2~L [log(2N + 1 ) + "/] (108) 

(N~)  ~< ~L [log(2N+ 1)+ 7], j =  i, 2,... (109) 
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Proof. The inequality (106) follows immediately from the proof of 
Theorem 2. The explicit form of the wave functions cp~ is the same as in 
(50), (53) with L' replaced by L. The estimates (108), (109) follow 
readily. | 

The inequality (108) shows that ~p~ (the ground state of the one-par- 
ticle kinetic energy operator of the model) is not macroscopically occupied. 
This is in striking contrast with the free gas, where the condensation in the 
mode ~0~ is complete at T=  0. We obtain in Proposition 4 a better estimate 
of (N~) ,  but before doing that we exploit (109) to show that even the 
milder criterion (1) is not fulfilled. 

C o r o l l a r y  2. There is no generalized condensation in this model; 
more  precisely, with the notation of (107): 

[ 2(r 2(2~)1/!~ (t10) L-1 ~' (N~)<~L-l[l~ i - e  ':'aL+ arc 
j :E~<~ 

Proof. Using (108), (109) we have 

20- 2 -1 
L-i ~ (A~LS<~L-~[log(2N+I)+~,] l _ e _ ~ Z + ~ - [ N ~ ]  (1tl) 

J:Ey L <~ e 

where [see (49)] 

( 2 ~ )  1/2 
I = L - -  

7C 
N~= ~ 112) 

j:O ~ E~ ~< 

so that (l l0) follows immediately. II 

The estimate (108) suffices to rule out Bose-Einstein condensation in 
the ordinary sense [see (2)] but in fact (N  L) can be computed explicitely. 
The calculation turns out to be simpler than that leading to (93) and we 
omit it. 

Proposition 4. For a, a>0 ,  we have 

2 1 
(N~ = (N+ 2) (1 -- e-2~") + O(e-,N) (1 13) 

The last possibility that we have to examine is the following one: could 
it be that there is macroscopic occupation of some unexpected one-particle 
level, completely unrelated to the kinetic energy? We use the results of Sec- 
tion 4.1 to show that no such phenomenon occurs in this model [in other 
words, the Onsager-Penrose criterion (7) is not satisfied either]. 
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T h e o r e m  3. Let f be an arbitrary normalized 
L2[0, L].  Then, for N and L large enough 

( N ~ )  ~ 3(N + 1 )3/4 log(2N + 1) 

Proof. With the notation (4), (32), we have 

(N/f) 2= (f  RL f)2 <~ IIR~t[ 2 

<.. f~ dx f~ dyp~(x, y) 

fief: <~ dx dypt(x, y) p}[2(X, X'~, eLn 1/2/Yr.*, Y) 

= Lp(g, R~g) = Lp(Nrg) 

where we have put 

wave 
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function in 

(114) 

(115) 

(116) 

(117) 

(118) 

pL(X, y) ~ p~/2(X, X) p~'2(y, y) (122) 

Now, by virtue of Proposition 1 

g(x) <~ {&r(N + 1)L/z[ 1 + l o g ( N -  1 )] + 8a } ~/2 (123) 

so that Corollary 1 gives, for N, L large enough 

(Ng L) ~<9(N+ 1)l/2[log(2N+ 1)] 2 (124) 

In deducing (117) from (116), we used the fact [obvious from (6)] that R~, 
is a positive operator; this together with the continuity of pL(x, y) [see 
Proposition 3 and remark (ii) in Section 4.1] implies that the kernel of the 
operator satisfies the inequality 

(121) 

Note that g is a normalized function in L2[0, L], because 

~L 1 rL 1 T r R ~ = I  Jo dxgZ(x)=~L Jo dxpL(x, x)=p----s 

I ~  7 J/2 1 g(x) = pL(x, x)j (119) 

N + I  
O= L (1201 
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We have thus proved [see (118)] that for any f i n  L2[0, L] one has, for N 
and L large enough 

(N~)2~<9(N+ 1)3/2[log(2N+ 1)32 | (125) 

Remarks. (i) In view of the current wisdom, it comes as a surprise 
that the singularity in the thermodynamic functions of the model 
[see (71)] is not accompanied by any form of Bose-Einstein condensation. 
However, from a mathematical view point, there is no reason why the two 
phenomena should be connected; indeed the thermodynamics is entirely 
controlled by the spectrum of the Hamiltonian, whereas condensation 
properties involve (through the reduced density matrix) the eigenfunctions 
as well (in fact only the ground state wave function if we work at zero tem- 
perature). The situation is radically different in the free gas, where 
occupation numbers are expressible in terms of the spectrum only (we refer 
here to the finite temperature case, since at T=  0 the free gas shows always 
complete condensation, even if there is no finite-temperature transition). 

Let us be more explicit. Consider a noninteracting Bose gas with one- 
particle Hamiltonian hL (possibly including an external potential); let {s~ } 
be the eigenvalues of hL. All the information relevant to the ther- 
modynamics and the condensation properties of the system at finite volume 
is contained in {s~}, or equivalently in the distribution of the eigenvalues 
of hL: 

FL(x)=L -~ ~ 1 (126) 
/ : 4  ~< x 

But the mere knowledge of the asymptotic distribution of the eigenvalues 

F(x)= lim FL(x) (127) 
L -*  o::~ 

does not give access to the condensation properties of the infinitely exten- 
ded model in the usual sense [see (2)]. However, both the ther- 
modynamics of the infinite system and its generalized condensation proper- 
ties [see (1)] follow from F(x)J 14) In that sense, a singularity in the ther- 
modynamic functions of a free Bose gas implies existence of generalized 
condensation. No such connection exists in the model of the interacting gas 
studied in this paper (see Corollary 2). In fact, as we mentioned earlier, 
there is no reason why a property of this type should be expected to hold, 
because already at finite volume the condensation properties of an 
interacting gas are not determined solely by the spectrum of the multipar- 
ticle Hamiltonian. 
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(ii) Penrose  (tg) has developed an argument  of  general nature which 
provides a lower  bound  o n  the occupat ion  of  any given one-particle  level in 
a hard core gas at zero  temperature.  This  est imate is particularly s imple in 
our  mode l  if we apply it to the level q~s = C e ~" L , we  find 

dx dypl~(x, y )  L L CPo (x) ~P0 (Y) (I28) 
~lx-- yl >a 

: O ( ( N +  t )  e-2~a('v+ 1)) (129) 

A compar i son  be tween (129) a n d  (113) shows tha t  the genera l  b o u n d  of  
Ref. 19 is r a the r  p o o r  in this model .  But,  wha t  is more  interesting,  we 
deduce  f rom (113), (128), (129) tha t  the ma in  con t r i bu t ion  to ( 3 , ~ )  comes 
f rom the in tegra t ion  on the region ! x - y ]  ~<a in (9 t ) .  This  casts a ser ious 

d o u b t  on the c o m m o n  belief tha t  condensa t ion  p roper t i e s  are  governed  by 
the a sympto t i c  behav ior  of  pL(x ,  y )  for i x -  y] large;  see [-15] and  [-20]. 
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